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Abstract. A model is developed to investigate the two-dimensional interfacial misfit dislocation networks
that follows the original Peierls-Nabarro idea. Structure and energies of heterophase interfaces are consid-
ered for the cubic lattice. To examine the energy contribution of misfit dislocations, where interactions be-
tween two dislocation arrays are concerned, a generalized stacking fault energy is proposed. Combined with
first-principles calculations, we apply this model to a practical metal-ceramic example: the Ag/MgO(100)
interface. An important correction to the adhesive energy is proposed in addition to its dislocation structure
being confirmed.

PACS. 68.35.-p Solid surfaces and solid-solid interfaces: Structure and energetics – 61.72.Bb Theories and
models of crystal defects – 61.72.Lk Linear defects: dislocations, disclinations

1 Introduction

The interfaces between dissimilar materials are prevalent
in numerous industrial applications, such as heterostruc-
ture devices, metal-ceramic composites, and protective
coatings [1], which has resulted in the topic receiving much
attention over the past two decades. It is of vital impor-
tance to understand their atomic structure and adhesive
energy since they control the properties and performance
of materials. In almost all of these interfaces, misfit dis-
locations (MD) are geometrically necessary defects, natu-
rally forming part of the interfacial structure.

To determine atomic structures and energies of MDs at
heterophase interfaces is complicated. Firstly, they are dif-
ficult to be determined experimentally [2–4]. The best the-
oretical tools for solving this problem are expected to be
those based on first-principles calculations. Some studies
have been made [5,6]; however, reliable results have been
reported only for a few cases with rather short periodic
structures. Normally, in the case of long periodic struc-
tures such as for MDs, the required system size will be
beyond presently available computational capacity. Con-
sequently, interfacial MDs have been neglected. Instead,
the coherent interface approximation (CIA) is used to
deal with interfaces that possess long periodic disloca-
tion structures, such as metal-ceramic interfaces. However,
estimates for theoretical adhesive energies calculated us-
ing the CIA, being much larger than observed values, are
controversial [5].
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An alternative theoretical framework is the Peierls-
Nabarro (PN) model [7,8], which employs multiscale tech-
niques. It can provide quantitative estimates of atomic
property of MDs. The generalized one-dimensional (1D)
PN model for an interfacial MD array had been proposed
by Yao et al. [9], in which a concise expression for the
displacement field of the MD had been derived. Recently,
this formalism has been successfully applied in a study
of the NiAl/Mo interface [10], and the Fe(100)/VN(100)
interface [11].

In previous studies based on PN models, it is always
assumed that the misfit occurs only in one single direction,
or in two independent directions without any interaction.
Hence, one obtains either an approximate solution [8], or
a more precise solution [9], by dealing with the 1D inter-
facial MD array. In fact, for real interfaces, lattice misfit
usually occurs in two dimensions. Thus, in general cases,
a 1D MD model will provide an inadequate description
the two-dimensional (2D), periodic, interactive dislocation
network structure which appears at the interface. A gener-
alized two-dimensional PN model will be developed in this
work, and will be applied to model heterophase interfaces
possessing 2D dislocation networks.

Without loss of generality, following reference [9], we
consider a bilayer composed from two cubic crystals, 1
(upper), and 2 (lower), joined at (001) surfaces, with a
MD network (the dislocation core) positioned at the in-
terface. The Ox3 axis is chosen to be directed toward the
upper crystal, and is perpendicular to the plane of the in-
terface Ox1x2 . The MD network is always aligned along
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the crystallographic directions 〈b〉 with Burgers vector bi,
and character 〈l〉 where the line directions are li (i = 1, 2),
similar to the definition in reference [2]. In the following,
we will denote a MD network by {〈b〉; 〈l〉}. For the sys-
tem concerned, we adopt the conventional assumptions:
(i) the crystals 1 and 2 have lattice parameters a1 and a2,
respectively (a1 > a2); (ii) a1 and a2 may be generated
from a reference lattice with parameter c defined by[8] as
follows.

p = Pa1 = (P + 1)a2 =
(

P +
1
2

)
c, (1)

where P is an integer; and (iii) the crystals behave as
isotropic elastic media in their response to applied forces,
with shear moduli µ1, µ2, and Poisson’s ratios ν1, ν2, re-
spectively. Equation (1) defines the MD spacing p, param-
eter c, and misfit f as

p =
a1a2

a1 − a2
,

c =
2a1a2

(a1 + a2)
, (2)

f =
c

p
=

2 (a1 − a2)
(a1 + a2)

.

A multiscale method is employed here to investigate the
interface, and a suitable energy function is developed to
describe the interface system. The two sides of the inter-
face are treated by the elastic continuum theory, while
the interface is treated by atomic theory. Similar to the
original PN model, the energy of the MD is calculated
as the sum of two contributions: the elastic strain energy
stored in the two semi-infinite elastic media of Eelastic1,
and Eelastic2, and the misfit energy associated with the dis-
tortion of atomic bonds across the interface [12], Emisfit.
Thus, the total energy of the system can be expressed by

Etot = Eelastic1 + Eelastic2 + Emisfit. (3)

In the following sections, we will derive the three parts of
the total energy as functions of the elastic displacement
field of the interface, then solve the minimum energy prob-
lem to find the interfacial structure and energy. In the final
section, we will apply the method to a model Ag/Mg(100)
interface, and discuss the results for its atomic structure
and adhesive energy.

2 Calculation of elastic energies

When two semi-infinite crystals adhere to one another to
form an interface, the atoms at the interface bond to-
gether so that the atoms on each side are displaced from
their normal lattice sites, and relax to a new equilibrium
structure that is described by a unique displacement field
around the interface. Modern atomic simulations find that
most interfaces have periodic structures. This section deals
with how the elastic energy is distributed in two semi-
infinite media for a given interfacial displacement field.

Let the displacement field of the upper half plane be
u+(x1, x2, 0), while the lower one be u−(x1, x2, 0). The
normal force in the interface is given as p33(x1 , x2, 0) = 0.
Based on the results reported in reference [8], we can es-
timate that the relative error of the total energy due to
this assumption is about 10%. Therefore, this is an elastic
problem about two semi-infinite bulk media given the cor-
responding displacement field u+(x1, x2, 0), u−(x1, x2, 0),
and the resulting normal force p33(x1, x2, 0) = 0.

Let us now apply the following treatment to the sys-
tem. For the upper semi-infinite material 1, we move some
material 1 to its lower semi-infinite part, and make the in-
terfacial displacement field of the replenishing material
opposite to the upper part; i.e. −u+(x1, x2, 0). Hence,
we create isotropic medium (I) containing a planar dis-
location network. For the lower infinite material 2, we
apply the equivalent procedure as done for 1, now us-
ing −u−(x1, x2, 0) for the corresponding interfacial dis-
placement field. This creates isotropic medium (II) with
its own planar dislocation network. Hence, the elastic
energy of our original two semi-infinite media now be-
comes half of the total elastic energy of these two infi-
nite, bulk, isotropic media with planar dislocation net-
works: i.e. half of medium (I)’s contribution added to half
of medium (II)’s.

For the case of an infinite, periodic, planar dislocation
network in an infinite, isotropic, elastic medium, we will
apply Kröner and Rey’s [13] formalism to construct the
elastic energy solution. Let r be a vector with coordinates
(x1, x2, x3), ρ any vector in the plane Ox1x2, and n the
unit normal vector of the interface plane. Then, the plane
dislocation density tensor α∗(ρ) has a distribution in one
cell that can be written as

α∗(n)(ρ) = n × βP . (4)

Here, βP
ij = ∂uP

j /∂xi is the strain in one cell, and uP
j is

the plastic displacement field, which is 2u+
j in medium (I),

and is 2u−
j in medium (II), respectively.

Following Kröner and Rey [13] the incompatibility ten-
sor η is defined as

ηil = Sym(εijkαlj,k). (5)

Here, Sym( ) means that we take only the symmetrical
part of the tensor inside the brackets, εijk is the permu-
tation tensor, and αlj,k holds for ∂αlj/∂xk.

The self-energy per unit surface for a periodic planar
distribution of a MD network can then be calculated using

Eelastic =
1

2s0

∫
S0

ηij(x1, x2, x3)χij(x1, x2, x3)dx1dx2dx3.

(6)
Here, χij = 2µ(χ

′
ij + [ν/(1 − ν)]χ

′
kkδij), µ and ν are the

shear moduli and Poisson ratio, respectively. s0 is the area
per unit cell, and χ′ can be obtained from �4χ′ = η [13].

For medium (I), we label the corresponding quanti-
ties α∗, η, χ, and χ′ with a superscript ‘+’. By the pro-
cess set out above, the elastic energy of the original semi-
infinite material 1 can be determined. In medium (II), we
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label quantities with a superscript ‘−’. The elastic energy
of the original semi-infinite material 2 can be obtained in
a similar manner. Then, the elastic energy of the semi-
infinite material 1 and the semi-infinite material 2 are de-
scribed by

Eelastic1 =
1

4s0

∫
S0

η+
ij(x1, x2, x3)χ+

ij(x1, x2, x3)dx1dx2dx3,

(7)
and

Eelastic2 =
1

4s0

∫
S0

η−
ij(x1, x2, x3)χ−

ij(x1, x2, x3)dx1dx2dx3,

(8)
respectively.

3 Misfit energy

The atomic misfit energy Emisfit in the glide interface
plane can be determined by the generalized stacking fault
energy γ-surface [14] (energy per unit area), which de-
scribes the atomic misfit energy when the two semi-
infinite crystals are shifted rigidly against each other
by a vector U . Accurate γ-surfaces are usually gener-
ated from first-principles calculations. Here, we repre-
sent the generalized stacking fault energy γ-surface by a
two-dimensional Fourier series, following the idea of refer-
ence [15]. We assume: (i) the crystals possess cubic sym-
metry; (ii) the misfit dislocations of the interface is de-
scribed according to a reference lattice with parameter c.
The simplest expression for the generalized γ-function can
take the form

γ (U1, U2) =
τ0c

4π2

[
ζ

(
2 − cos

2πU1

c
− cos

2πU2

c

)

+

(
1 − ζ

2

)(
2 − cos

2π (U1 + U2)
c

− cos
2π (U1 − U2)

c

)]
. (9)

Here, c is defined in equation (2), τ0 and ζ are adjustable
coefficients. τ0 represents the bond strength parallel to
the interface, and ζ represents the shape of the γ-surface.
U = (U1, U2, 0) is the relative displacement between corre-
sponding atoms on each side, which is the combined plastic
displacement and misfit displacement. The atomic misfit
displacement is the intrinsic relative displacement that,
due to the unequal lattice parameter a1 �= a2, is induced
when crystal 1 and crystal 2 join each other to form the
interface, under the condition of no distortion occurring.

Thus, U = (U1, U2, 0) can be expressed by
u(x1, x2, 0)[8]:

U1 (x1, x2) =
c

2
+

c

p
x1 + u+

1 (x1, x2, 0) − u−
1 (x1, x2, 0)

U2 (x1, x2) =
c

2
+

c

p
x2 + u+

2 (x1, x2, 0) − u−
2 (x1, x2, 0)

(10)

where c/2 + c/px1 and c/2 + c/px2 represent the atomic
misfit displacement contribution along the two orthogonal
axes, respectively.

The γ-function in equation (9) yields a variety of
γ-surfaces: see Figure 1. Notice that it changes strongly
with the adjustable coefficient ζ. The larger that ζ
is, the higher the peak at the centre of the γ-surface
rises, γ(c/2, c/2). The generalized stacking fault energy
γ-surface expressed in this form has two merits: (i) when
U1 = 0, or U2 = 0, it reduces to a simple cosine func-
tion which is dependent on τ0 only; (ii) when ζ = 1,
γ(U1, U2) = τ0c

4π2 (2− cos 2πU1
c − cos 2πU2

c ), and the 2D dis-
location network problem degenerates into the 1D dislo-
cation array problem, which can be solved by the method
in reference [8] or [9].

Given the generalized stacking fault energy γ-surface,
the average interface misfit energy is then

Emisfit =
1
s0

∫
S0

γ (U1 (x1, x2) , U2 (x1, x2)) dx1dx2. (11)

4 Total interface energy

Combining the results above, the total interface energy
per unit area for the periodic interface system is

Etot =
1

4s0

∫
S0

η+
ij(x1, x2, x3)χ+

ij(x1, x2, x3)dx1dx2dx3

+
1

4s0

∫
S0

η−
ij(x1, x2, x3)χ−

ij(x1, x2, x3)dx1dx2dx3

+
1
s0

∫
S0

γ (U1 (x1, x2) , U2 (x1, x2)) dx1dx2.

(12)

Naturally, the equilibrium elastic displacement field u+

and u− must lead to an global minimum for Etot. In
order to minimize the energy function Etot numerically,
the usual approach is to discretize space. The continu-
ous space is thereby uniformly divided into many small
regions, where each of the regions is represented by one
discrete point. The displacement of the discrete points po-
sition, therefore, becomes a variable in the energy mini-
mization procedure.

The plastic strain, for the elastic energies mentioned
above, is treated by a similar discrete scheme: βP

ij =
[uj (I, J + 1) − uj(I, J)] /∆xi, where I, J indicate the
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position coordinate of the corresponding discrete space.
Then, the plane dislocation density tensor α can be de-
rived from equation (4). Finally, the incompatibility ten-
sor η is treated similarly. Once the incompatibility tensor
η is known, the strain energy can be obtained from equa-
tion (6). In this process, the critical problem is how to ob-
tain χ and χ′. Here, we follow Rey and Saada’s work [13],
the details of which are shown in the Appendix.

The total energy of the interface system, fi-
nally, can be expressed in terms of the variables
u+

1 (I, J), u−
1 (I, J), u+

2 (I, J), and u−
2 (I, J); i.e., Etot =

Etot(u+
1 (I, J), u+

2 (I, J), u−
1 (I, J), u−

2 (I, J)). By mini-
mizing the total energy, we can obtain the displacement
field u+

1 (I, J), u−
1 (I, J), u+

2 (I, J), and u−
2 (I, J). Further-

more, the energies of the interface, the stress field, and the
strain field can also be determined.

In the computation, we adopt Newton’s method to
minimize the energy. For the special case of ζ = 1,
γ(U1, U2) = τ0c

4π2 (2 − cos 2πU1
c − cos 2πU2

c ), and there is
no interaction between the two MD arrays with differ-
ent directions. The 2D MD network degenerates into two
independent 1D arrays, for which an analytical solution
exists [9]. Our computational result is in agreement with
this analytical solution.

5 The interaction between two MD arrays
with orthogonal directions

In general, according to the classic elasticity theory of
Volterra dislocations, interaction occurs between a pair
of MD arrays with different directions. Hence, the interfa-
cial energy of a periodic MD network is usually not equal
to the net energy of two 1D dislocation arrays. We know
that only in the special case with ζ = 1, can γ(U1, U2)
be decomposed into f(U1) + f(U2), meaning that the two
parts have no interaction; otherwise, one must consider
the contribution of their interaction to the total interface
energy.

Figure 2 illustrates the relationship between the total
interface energy and ζ with different values of τ0 and mis-
fit parameter f(= c/p). Since the total interface energy
corresponds to the special case of no interaction between
the two intersecting dislocation arrays, we can study their
interaction by how much the total interface energy differs
from Etot(ζ = 1). When τ0 is large and the misfit pa-
rameter f is small; over a range of ζ, the interface energy
remains close to Etot(ζ = 1) (see Fig. 2). From this be-
haviour, we can conclude that the interaction is weak. The
range for nearly no interaction is ζ > 0.1, when τ0 = 10µ
and f = 0.1; and the range is ζ > 0.5, for τ0 = 3µ and
f = 0.1. However, interaction between the two dislocation
arrays cannot be neglected when τ0 is small and f is large,
such as τ0 = 0.1µ and f = 0.1 (see Fig. 2). The more τ0

decreases and f increases, the larger the ratio of the dis-
location core is in comparison with to the global interface
area. Figure 3 illustrates the effect of τ0 on the interface
displacement field. The misfit parameter f produces sim-
ilar behaviour.
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Fig. 1. The generalized stacking fault energy γ-surface. (a)
ζ = 0; (b) ζ = 0.25; (c) ζ = 0.5; (d) ζ = 0.75; (e) ζ = 1; (f)
ζ = 1.25; (g) ζ = 1.5; (h) ζ = 1.75. The labels indicated in (a)
apply to all.
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Fig. 2. The total interface energy versus ζ. (a) τ0 is set at
five different values as indicated in the diagram, while all other
parameters are held fixed: c = 1, f = 0.1, µ1 = µ2 = µ,
ν = 0.3; (b) f is set at five different values as indicated in the
diagram, while all the other parameters are held fixed: c = 1,
τ0 = µ1 = µ2 = µ, and ν = 0.3.
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Fig. 3. The dislocation structure corresponding to different
τ0 values, i.e., isolines of the interface displacement field U1.
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0.11
0.220.33

0.44

0.55
0.66

0.77

0.88

0.99

4

8

x 2

4

8
(d)(c)

x 2

0 4 8
0

4

8

x
1

(e)

x 2

x
1

4 8

(f)

 

(b)(a)

Fig. 4. The dislocation structure corresponding to different
γ-surfaces, i.e., isolines of the interface displacement field U1.
(a) ζ = 0; (b) ζ = 0.25; (c) ζ = 0.5; (d) ζ = 0.75; (e) ζ = 1;
(f) ζ = 1.25. All the other parameters are held fixed: c = 1,
f = 0.1, τ0 = µ1 = µ2 = µ, and ν = 0.3.

We know that interaction between the two dislocation
arrays is related to the generalized γ-surface (ζ), and the
effect of γ-surface mostly depends on the structure of dis-
location core (see Figs. 1–3). Thus, if the dislocation core
is relatively small, then the interaction contributes little
to the total interface energy. Only in these circumstances
can the 1D PN model describe the interface system ade-
quately [9].

The dislocation line expands when ζ > 1, and shrinks
when ζ < 1 (see Fig. 4). For a given τ0 and f , the larger
|ζ − 1| is, the greater is the distortion the displacement
field in dislocation core, and structure of the interface MD
network responds accordingly. For example, the MD net-
work appears as N1 = { 1

2 〈110〉; 〈110〉} when ζ = 0 (see
(a) in Fig. 4), in contrast with N2 = { 1

2 〈100〉; 〈100〉} when
ζ = 1 (see (e) in Fig. 4).

6 Application to the Ag/MgO(100) interface

The Ag/MgO(100) interface has been studied extensively.
Recent experiments have come to two different conclu-
sions. In one study based on high resolution transmis-
sion electron microscopy (HRTEM) observations [2], the
structure proposed for the dislocation networks is N2 =
{ 1

2 〈100〉; 〈100〉}. The other study concludes from grazing
incidence x-ray scattering (GIXS) measurements [3] that
it is N1 = { 1

2 〈110〉; 〈110〉}. We aim to resolve this by ap-
plying our model to the Ag/MgO(100) interface.

Based purely on geometric arguments, the coincidence-
site lattice (CSL) theory [16] is used to construct the initial
atomic positions of the Ag/MgO(100) interface. Previous
first-principles calculations predict that the silver atoms
at the interface prefer to lie above oxygen ions on the sub-
strate instead of magnesium ions, when both the Ag and
MgO crystals are cut and joined along their 〈001〉 direc-
tions. Consequently, this suggests that the coincidence-site
points are as follows. The positions of the O atoms of the
unrelaxed MgO lattice are located exactly above above all
the unrelaxed Ag atoms, so that a square CSL oriented
along 〈110〉 directions is obtained. The CSL lattice pos-
sesses 95.6 Å periodicity in one cell, of which the period
of the MgO ceramic is 32 and Ag metal is 33.

In order to apply our model, it is important to con-
struct an appropriate generalized stacking fault energy
γ-surface for the Ag/MgO(100) interface. This is done by
fitting the γ-function to results from first-principles cal-
culations. These are taken from the work of Schönberger
et al. who used the linear muffin-tin orbital (LMTO)
method in their study of the Ag/MgO(100) interface [17].
In their model, the metal was stretched uniformly par-
allel to the interface to match the ceramic substrate in
three different translation states: a Ag atom above a hole,
a Ag atom above a Mg atom, and a Ag atom above an
O atom. The adhesive energies corresponding to the three
translation states are: 0.6 eV, 0.4 eV, and 0.8 eV, respec-
tively. Using these three values in the γ-function (9) yields
τ0 = 34.1 GPa and ζ = 0.856. The elastic parameters
used in our calculation are, µAg = 33.8 GPa, νAg = 0.354;
µMgO = 129 GPa, and νMgO = 0.173 [12].

Figure 5 shows the relative displacement field of
the interfacial atoms U1 and U2, which are defined in
equation (10). The MD network in Figure 5 is N1 =
{ 1

2 〈110〉; 〈110〉} type with pure edge character: i.e. it is ori-
ented along 〈110〉 directions with 1

2 〈110〉 Burgers vectors.
This is in agreement with Renaud et al.’s observations [3],
and different from Trampert et al.’s study[2]. The conclu-
sion from the HRTEM[2] experiments appears doubtful,
because the {110} cross-section was not observed, and the
image of the {100} cross-section reported is unclear.

The positions of the interfacial atoms are shown in
Figure 6, from which it can be seen clearly that the MD
network is N1 = { 1

2 〈110〉; 〈110〉} type. Due to the interac-
tion between the two perpendicular arrays, the dislocation
lines expand outwards slightly in the core of overlapping
sub-lattices, as illustrated in Figure 5. Clearly, their inter-
action is weak. From Figure 5, we can also estimate that
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the half-width of the MD is about 6.6 Å, i.e. approximately
2.3 times the interatomic distance.

Figure 7 plots the elastic displacement field of the
Ag/MgO(100) interface system. From this, it is estimated
that the elastic strain in the Ag at the interface is about
three times of that in the MgO, i.e. approximately the ra-
tio [µMgO/(1− νMgO)]:[µAg/(1− νAg)]. The largest elastic
displacements are about 0.65 Å and 0.22 Å for Ag metal
and MgO ceramic, respectively.

We also calculate the interfacial energies: the mis-
fit energy is 0.100 Jm−2, the elastic energy stored in
the Ag is 0.085 Jm−2, the elastic energy stored in the
MgO is 0.0285 J m−2, making the total elastic energy
0.114 J m−2, and the total interface energy in the system
0.214 J m−2. This is significantly smaller than the total
interface energy 0.313 Jm−2 calculated previously using
our 1D PN model[9]. In addition to the interaction among
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Fig. 7. The elastic displacement field u1(x1, x2) and u2(x1, x2)
of the Ag/MgO(100) interface. (a) and (b) are the field in the
Ag metal; while (c) and (d) are the field in the MgO ceramic.
The units of both u1 and u2 are Å. The axis x1 and x2 are
along the 〈110〉 crystallographic directions, respectively.

dislocations in the 2D model, the difference between the
two values is mainly due to the MD network being N1

type in the present work, while being assumed to be N2

type in Ref. [9]. Crucially, the 2D PN model, can auto-
matically predict the dislocation network type, while in
1D PN model cannot.

Finnis [5] pointed out that when the interfacial MD
network is neglected, the adhesive energy resulting from
first-principles calculations using the CIA will be larger
than the experimental value (0.45± 0.1) J m−2. Thus, the
true adhesive energy is smaller by an amount equal to the
total interface energy considered in this work. Among sev-
eral theoretical estimates, the one closest to the measured
value is 0.9 J m−2 [6]. Subtracting the total interface en-
ergy calculated in this work from it leaves approximately
0.7 J m−2. Although this is still larger than the measured
energy, the discrepancy has been reduced. In our opinion,
future prospects for improving agreement between theory
and experiment are good.

7 Summary and conclusion

A model that follows the original Peierls-Nabarro idea is
proposed to treat 2D interfacial MD networks. Atomic
structures and energies are considered, and the gener-
alized stacking fault energy γ-surface is explored in de-
tail. The interaction between the two orthogonal dis-
location arrays at the interface between two dissimilar
cubic crystals is discussed. The method is applied to
a model Ag/MgO(100) interface, representing a practi-
cal example. Its dislocation network type is confirmed as
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being N1 = { 1
2 〈110〉; 〈110〉}. First-principles calculations

on their own overestimate the adhesive energy. This dis-
crepancy is reduced significantly by including the total
interface energy calculated here. Thus, our formalism rep-
resents an important correction, which originates from the
elastic and the misfit energies of the system. Although the
systems considered here are (001) faces of cubic lattices
only, this method can, in principle, be directly extended
without any difficulty to other types of lattice. We expect
this multiscale method may be applied in understanding
other complicated interface systems.

This work was supported by the Knowledge Innovation
Project of the Chinese Academy of Sciences (NSFC) grant
Nos. 10404035, 10534030, 10674163.

Appendix

In this appendix, we apply Kröner’s theory to calculate
the elastic energy for the case of a 2D periodic, planar
dislocation network, and provide the full expressions for
the tensors, η, χ, and χ′, etc.

Assuming that the 2D periodic translation lattice vec-
tors are (a(1), a(2)), we can define reciprocal lattices
(g(1), g(2)) by g(i) · a(j) = δi,j . Hence, the planar dis-
location density tensor α can be expressed in a Fourier
series:

α∗ (ρ) =
∑

g

α∗(g) exp 2πigρ, (13)

in which

α∗(g) (ρ) =
1
s0

∫
S0

α∗ (ρ) exp (−2πigρ) dx1dx2. (14)

Here, s0 is the area of a unit cell. From equation (4), we
obtain

α
∗(g)
ij =

1
s0

∫
S0

βP × n exp (−2πigρ)dx1dx2. (15)

According to Kröner’s theory (1958),

ηij = Sym (εijkαij,k) , (16)

which is equation (5).
We define two tensors A (ρ) and B (ρ):

A (ρ) =(
0 0 1

2

(
α∗

11,2 − α∗
12,1

)
0 0 1

2

(
α∗

21,2 − α∗
22,1

)
1
2

(
α∗

11,2 − α∗
12,1

)
1
2

(
α∗

21,2 − α∗
22,1

)
0

)
,

(17)

and

B (ρ) =

⎛
⎝α∗

12
1
2 (α∗

22 − α∗
11) 0

1
2 (α∗

22 − α∗
11) −α∗

21 0
0 0 0

⎞
⎠ . (18)

Thus, for the plane distribution condition, the result is

η (r) = A (ρ) δ (x3) + B (ρ) δ
′
(x3) . (19)

Both A and B are periodic tensors, similar to α∗, which
can also be expressed as Fourier series.

From Kröner’s theory, the self-energy of one unit cell
in periodic planar distribution dislocation is

Es =
1

2s0

∫
S0

ηij (x1, x2, x3)χij (x1, x2, x3) dx1dx2dx3.

(20)
Here

χij = 2µ

(
χ′

ij +
ν

1 − ν
χ′

kkδij

)
, (21)

with shear moduli µ and Poisson ratio ν. Then, χ′ is de-
termined by

∇4χ′ = η. (22)

Combining equations (17–19), and (22) yields the result

∇4χ′ = Aδ (x3)+
(
B − B(0)

)
δ
′
(x3)+B(0)δ

′
(x3) . (23)

Its solution, provided by Rey and Saada[13], is

χ′ = A′ +
1
4
B(0)x2

3 sgnx3, (24)

where

A′ =
′∑
g

A′(g) (x3) exp (2πigρ) exp (−2πg|x3|) , (25)

A′(g) (x3) =
(

1 + 2πg|x3|
32π3g3

)
A(g) − x3B

(g)

8πg
. (26)

The tensors χ′, η, and χ are, therefore, formulated as
above.
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